NUMBER THEORY
---------------------
For details see post on 26-Feb-2015 at 6:00 am.
------------------------
---------------------
For details see post on 26-Feb-2015 at 6:00 am.
------------------------
Prove that for every positive integer n, there is a nonnegative integer i and an odd integer j so that n = 2^i * j
hope you mean … | ||||||||
N = [2^I] *[J] …ASSUMING SO … | ||||||||
ANY POSITIVE INTEGER N CAN BE WRITTEN AS | ||||||||
N = 2M ….OR …..N=2M+1…….WHERE M IS AN INTEGER | ||||||||
CASE 1…N=2M | ||||||||
AS PER PRIME FACTOR THEOREM .. | ||||||||
M=[{P1^A1}{P2^A2}{P3^A3}……ETC]…..WHERE P1,P2,…ETC ARE PRIME NUMBERS | ||||||||
SAY …P1=2 , P2=3 , P3=5….ETC...AND A1 , A2 …ETC ARE NON NEGATIVE INTEGERS . | ||||||||
SO WE GET … | ||||||||
N=2M = 2*[{P1^A1}{P2^A2}{P3^A3}……ETC]….. | ||||||||
THAT IS … | ||||||||
N = [2^(A1+1)] * [{P2^A2}{P3^A3}………….] = [2^I] * [J ] ….…PROVED | ||||||||
CASE 1…N=2M+1 | ||||||||
AS PER PRIME FACTOR THEOREM .. | ||||||||
N=[{P2^A2}{P3^A3}……ETC]…..WHERE P1,P2,…ETC ARE PRIME NUMBERS | ||||||||
SAY …P1=2 , P2=3 ,P3=5... ETC...AND A1 , A2 …ETC ARE NON NEGATIVE INTEGERS . | ||||||||
SO WE GET … | ||||||||
N= [2^0]*[{P2^A2}{P3^A3}……ETC] = [ 2^0] * J ……PROVED .. |
0 Comments:
Post a Comment
<< Home