INFINITE SERIES
-------------------------
--------------------------
-------------------------
--------------------------
How to prove the sequence (an) does not converge?
an =1+1/2+1/3+...+1/n
A(N)=1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+(1/7)+1/8)+…...…….. | |||||
A(N)=1+(1/2)+[(1/3)+(1/4)]+[(1/5)+(1/6)+(1/7)+1/8)]+…...…….. | |||||
OBVIOUSLY A(N) > B(N ) WHERE B(N) IS | |||||
B(N)=1+(1/2)+[(1/4)+(1/4)]+[(1/8)+(1/8)+(1/8)+1/8)]+…...…….. | |||||
B(N)=1+(1/2)+[1/2]+[1/2]+…… = 1+(1/2)+(N/2) | |||||
CLEARLY AS N TENDS TO INFINITY B(N) TENDS TO INFINITY . | |||||
BUT A(N) > B(N)……SO A(N) TENDS TO INFINITY | |||||
THAT IS THE SEQUENCE A(N) IS DIVERGENT …PROVED… |
0 Comments:
Post a Comment
<< Home