LINEAR ALGEBRA
--------------------
On Z3, Let A = (0 1 0 0 0 1 0 0 1). Let V = {(a b c)|a, b, c epsilon Z, } and f:V ---> V be defined by f(u) = Au. find the kernel of f and show it is a congruence.
--------------------
For details see post on
26-Feb-2015 at 6:00 am.
-------------------------On Z3, Let A = (0 1 0 0 0 1 0 0 1). Let V = {(a b c)|a, b, c epsilon Z, } and f:V ---> V be defined by f(u) = Au. find the kernel of f and show it is a congruence.
A= | V= | ||||||||
0 | 1 | 0 | a | ||||||
0 | 0 | 1 | b | ||||||
0 | 0 | 1 | c | ||||||
F[U] = A*U | |||||||||
KERNEL IS GIVEN BY | |||||||||
F[U] = A*U =0 | |||||||||
0 | 1 | 0 | a | 0 | |||||
0 | 0 | 1 | * | b | = | 0 | |||
0 | 0 | 1 | c | 0 | |||||
b=0….c=0…. | |||||||||
a CAN BE ANY VALUE …SO KERNEL IS … | |||||||||
1 | |||||||||
0 | |||||||||
0 | …………..ANSWER | ||||||||
.. | |||||||||
F[U]=A*U ………………. | |||||||||
HERE THE KERNEL OF THIS TRANSFORM MEANS THE | |||||||||
EQUIVALENCE RELATION THAT F INDUCES ON ITS DOMAIN …THAT IS … | |||||||||
IF U = U ' ….THEN IT IMPLIES THAT F[U] = F[U'] | |||||||||
HENCE WE SAY THE KERNEL OF THE L.T. | |||||||||
IS A CONGRUENCE RELATION |
0 Comments:
Post a Comment
<< Home