SETS RELATIONS
------------------
------------------------
------------------
------------------------
Suppose A and B are sets, f : A -> B is a function, and R is the relation
on A so that for x, y in A, xRy if and only if f (x) = f (y).
1. Show that R is an equivalence relation on A.
on A so that for x, y in A, xRy if and only if f (x) = f (y).
1. Show that R is an equivalence relation on A.
2. Show that for every set A and every equivalence relation R on A, there is
a set B and a function f : A -> B such that R is the relation described above
a set B and a function f : A -> B such that R is the relation described above
GIVEN …F[A]=B | |||||||
AND …X R Y IFF F[X]=F[Y] | |||||||
1. REFLEXIVE .. | |||||||
WE HAVE F[X]=F[X] | |||||||
SO X R X …OK | |||||||
2. SYMMETRIC .. | |||||||
X R Y …SO …F[X]=F[Y]=F[X] … | |||||||
SO Y R X …OK | |||||||
3.TRANSITIVE .. | |||||||
X R Y & Y R Z …SO … | |||||||
F[X]=F[Y] & F[Y] = F[Z]…THAT IS F[X]=F[Z] | |||||||
SO X R Z ……OK | |||||||
1 , 2 AND 3 IMPLY THAT R IS AN EQUIVALENCE RELATION … | |||||||
GIVEN A SET A & A RELATION R AS ABOVE IN A . | |||||||
TST ...THERE IS SET B & A FUNCTION F[A]=B AS ABOVE . | |||||||
1. R IS REFLEXIVE | |||||||
SO IF X IS ANY ELEMENT IN A THEN F[X]=F[X] | |||||||
2. R IS SYMMETRIC … | |||||||
SO IF X R Y , THEN IT IMPLIES Y R X … | |||||||
THAT IS .. | |||||||
F[X]=F[Y]=F[X] | |||||||
3.R IS TRANSITIVE … | |||||||
SO IF X R Y AND Y R Z , THEN IT IMPLIES …X R Z ….THAT IS .. | |||||||
F[X] = F[Y] = F[Z] | |||||||
HENCE IF WE DEFINE A SET SAY B = F[A] , THEN FROM 1,2,3 ABOVE | |||||||
THEY IMPLY THAT F[X] IS UNIQUE , ON TO & ONE TO ONE .. | |||||||
THAT IS THE EQUIVALENCE RELATION REPRESENTS A BIJECTIVE FUNCTION | |||||||
HENCE THE RESULT .. |
0 Comments:
Post a Comment
<< Home