MATRICES - LINEAR EQUATIONS
----------------------------------------------

----------------------------------------------
For details see post on
26-Feb-2015 at 6:00 am.
-----------------------------
| 2a)…. | ||||||||
| A= | ||||||||
| 1 | 1 | -1 | 9 | |||||
| 0 | 8 | 6 | -6 | |||||
| -2 | 4 | -6 | 40 | |||||
| NR3=R3+2R1 | ||||||||
| 1 | 1 | -1 | 9 | |||||
| 0 | 8 | 6 | -6 | |||||
| 0 | 6 | -8 | 58 | |||||
| NR1=R1-R2/8….NR2=R2/8….NR3=R3-6R2/8 | ||||||||
| 1 | 0 | -1.75 | 9.75 | |||||
| 0 | 1 | 0.75 | -0.75 | |||||
| 0 | 0 | -12.5 | 62.5 | |||||
| NR1=R1-1.75R3/12.5….NR2=R2+0.75R3/12.5…NR3=R3/-12.5 | ||||||||
| 1 | 0 | 0 | 1 | |||||
| 0 | 1 | 0 | 3 | |||||
| 0 | 0 | 1 | -5 | |||||
| HENCE THE SOLUTON IS | ||||||||
| X= | 1 | |||||||
| Y= | 3 | |||||||
| Z= | -5 | |||||||
| ANSWER | ||||||||
| 2b)…. | ||||||||
| A= | ||||||||
| 2 | -2 | 4 | 0 | 0 | ||||
| -3 | 3 | -6 | 5 | 15 | ||||
| 1 | -1 | 2 | 0 | 0 | ||||
| NR1=R1/2….NR2=R2+3R1/2….NR3=R3-R1/2 | ||||||||
| 1 | -1 | 2 | 0 | 0 | ||||
| 0 | 0 | 0 | 5 | 15 | ||||
| 0 | 0 | 0 | 0 | 0 | ||||
| NR2=R2/5 | ||||||||
| 1 | -1 | 2 | 0 | 0 | ||||
| 0 | 0 | 0 | 1 | 3 | ||||
| 0 | 0 | 0 | 0 | 0 | ||||
| LAST ROW IS ALL ZEROS ..SO L.D. & CONSISTENT EQNS. | ||||||||
| X-Y+2Z=0……X=Y-2Z | ||||||||
| T=3 | ||||||||
| WE HAVE 2 L.I. EQNS. IN 4 VARIABLES SAY X,Y,Z,T | ||||||||
| HENCE 4-2 = 2 FREE VARIABLES…TAKING Y & Z AS FREE VARIABLES | ||||||||
| THE SOLUTON SET IS IN GENERAL | ||||||||
| X= | Y-2Z | |||||||
| Y= | Y | |||||||
| Z= | Z | |||||||
| T= | 3 | |||||||
| WHERE Y & Z CAN BE ANY REAL NUMBERS …. | ||||||||
| SAY …. | ||||||||
| X= | 1 | -2 | -1 | |||||
| Y= | 1 | …..OR ….. | 0 | …..OR ….. | 1 | ….ETC… | ||
| Z= | 0 | 1 | 1 | |||||
| T= | 3 | 3 | 3 | |||||
| ANSWER | ||||||||
| 3….... | ||||||||
| A= | ||||||||
| 4 | -2 | 6 | ||||||
| -2 | 1 | -3 | ||||||
| RANK SHALL SATISFY 2 CONDITIONS … | ||||||||
| 1. THERE SHALL BE AT LEAST ONE NON ZERO DETERMINANT | ||||||||
| THAT CAN BE OBTAINED FROM THE MATRIX BY SELECTING SOME ROWS/COLUMNS | ||||||||
| 2.THE ORDER OF SUCH DETERMINANT SHALL BE THE MAXIMUM POSSIBLE ORDER. | ||||||||
| LET US CHECK ……NR1=R1+2R2 | ||||||||
| 0 | 0 | 0 | ||||||
| -2 | 1 | -3 | ||||||
| WE CAN HAVE A NON ZERO DETERMINANT OF ORDER 1 ONLY | ||||||||
| SO RANK = 1 | ||||||||
| 4….. | ||||||||
| A= | A^2= | |||||||
| -10 | -25 | 1 | 0 | 0 | -36 | |||
| 4 | 10 | 1 | 0 | 0 | 13 | |||
| 0 | 0 | -1 | 0 | 0 | 1 | |||
| RANK OF A = 2 SINCE WE HAVE |Am|=-35 AS NON ZERO WHERE | ||||||||
| Am= | ||||||||
| -25 | 1 | |||||||
| 10 | 1 | |||||||
| WHERE AS RANK A^2 = 1 , SINCE WE HAVE NO II ORDER NON ZERO DETERMINANT | ||||||||
| NOW CONSIDER … | ||||||||
| B= | B^2= | |||||||
| 1 | 2 | 3 | 24 | 33 | 42 | |||
| 4 | 5 | 6 | 54 | 75 | 96 | |||
| 5 | 7 | 9 | 78 | 108 | 138 | |||
| WE CAN SEE HERE THAT RANK OF B = 2 = RANK OF B^2 | ||||||||
| SO WE HAVE AN EXAMPLE WHERE .. | ||||||||
| RANK OF A = RANK OF B = 2 | ||||||||
| BUT RANK OF A^2 = 1 IS NOT EQUAL TO RANK OF B^2=2 | ||||||||
| 6…. | ||||||||
| IN A NON SQUARE MATRIX OF SAY M ROWS AND N COLUMNS | ||||||||
| WE HAVE 2 CASES | ||||||||
| CASE 1 ….. M < N | ||||||||
| THAT IS THERE ARE MORE COLUMNS THAN ROWS … | ||||||||
| THAT IS THERE ARE MORE THAN M COLUMN VECTORS | ||||||||
| IN RM SPACE OF DIMENSION M .. | ||||||||
| BUT WE CAN AT MOST HAVE HAVE M LINEARLY INDEPENDENT | ||||||||
| COLUMN VECTORS IN RM OF DIMENSION M. | ||||||||
| SO THE N COLUMN VECTORS ARE L.D. | ||||||||
| THAT IS THE COLUMNS ARE L.D. | ||||||||
| CASE 2 ……M > N | ||||||||
| THAT IS THERE ARE MORE ROWS THAN COLUMNS .. … | ||||||||
| USING THE PROPERTY THAT |A| = | A TRANSPOSE|, | ||||||||
| BY TAKING TRANSPOSE OF THIS MATRIX AND APPLYING THE | ||||||||
| SAME LOGIC AS ABOVE , WE CAN PROVE THAT THE ROWS | ||||||||
| WILL BE L.D. | ||||||||


0 Comments:
Post a Comment
<< Home