MATRICES - LINEAR EQUATIONS
----------------------------------------------
----------------------------------------------
For details see post on
26-Feb-2015 at 6:00 am.
-----------------------------2a)…. | ||||||||
A= | ||||||||
1 | 1 | -1 | 9 | |||||
0 | 8 | 6 | -6 | |||||
-2 | 4 | -6 | 40 | |||||
NR3=R3+2R1 | ||||||||
1 | 1 | -1 | 9 | |||||
0 | 8 | 6 | -6 | |||||
0 | 6 | -8 | 58 | |||||
NR1=R1-R2/8….NR2=R2/8….NR3=R3-6R2/8 | ||||||||
1 | 0 | -1.75 | 9.75 | |||||
0 | 1 | 0.75 | -0.75 | |||||
0 | 0 | -12.5 | 62.5 | |||||
NR1=R1-1.75R3/12.5….NR2=R2+0.75R3/12.5…NR3=R3/-12.5 | ||||||||
1 | 0 | 0 | 1 | |||||
0 | 1 | 0 | 3 | |||||
0 | 0 | 1 | -5 | |||||
HENCE THE SOLUTON IS | ||||||||
X= | 1 | |||||||
Y= | 3 | |||||||
Z= | -5 | |||||||
ANSWER | ||||||||
2b)…. | ||||||||
A= | ||||||||
2 | -2 | 4 | 0 | 0 | ||||
-3 | 3 | -6 | 5 | 15 | ||||
1 | -1 | 2 | 0 | 0 | ||||
NR1=R1/2….NR2=R2+3R1/2….NR3=R3-R1/2 | ||||||||
1 | -1 | 2 | 0 | 0 | ||||
0 | 0 | 0 | 5 | 15 | ||||
0 | 0 | 0 | 0 | 0 | ||||
NR2=R2/5 | ||||||||
1 | -1 | 2 | 0 | 0 | ||||
0 | 0 | 0 | 1 | 3 | ||||
0 | 0 | 0 | 0 | 0 | ||||
LAST ROW IS ALL ZEROS ..SO L.D. & CONSISTENT EQNS. | ||||||||
X-Y+2Z=0……X=Y-2Z | ||||||||
T=3 | ||||||||
WE HAVE 2 L.I. EQNS. IN 4 VARIABLES SAY X,Y,Z,T | ||||||||
HENCE 4-2 = 2 FREE VARIABLES…TAKING Y & Z AS FREE VARIABLES | ||||||||
THE SOLUTON SET IS IN GENERAL | ||||||||
X= | Y-2Z | |||||||
Y= | Y | |||||||
Z= | Z | |||||||
T= | 3 | |||||||
WHERE Y & Z CAN BE ANY REAL NUMBERS …. | ||||||||
SAY …. | ||||||||
X= | 1 | -2 | -1 | |||||
Y= | 1 | …..OR ….. | 0 | …..OR ….. | 1 | ….ETC… | ||
Z= | 0 | 1 | 1 | |||||
T= | 3 | 3 | 3 | |||||
ANSWER | ||||||||
3….... | ||||||||
A= | ||||||||
4 | -2 | 6 | ||||||
-2 | 1 | -3 | ||||||
RANK SHALL SATISFY 2 CONDITIONS … | ||||||||
1. THERE SHALL BE AT LEAST ONE NON ZERO DETERMINANT | ||||||||
THAT CAN BE OBTAINED FROM THE MATRIX BY SELECTING SOME ROWS/COLUMNS | ||||||||
2.THE ORDER OF SUCH DETERMINANT SHALL BE THE MAXIMUM POSSIBLE ORDER. | ||||||||
LET US CHECK ……NR1=R1+2R2 | ||||||||
0 | 0 | 0 | ||||||
-2 | 1 | -3 | ||||||
WE CAN HAVE A NON ZERO DETERMINANT OF ORDER 1 ONLY | ||||||||
SO RANK = 1 | ||||||||
4….. | ||||||||
A= | A^2= | |||||||
-10 | -25 | 1 | 0 | 0 | -36 | |||
4 | 10 | 1 | 0 | 0 | 13 | |||
0 | 0 | -1 | 0 | 0 | 1 | |||
RANK OF A = 2 SINCE WE HAVE |Am|=-35 AS NON ZERO WHERE | ||||||||
Am= | ||||||||
-25 | 1 | |||||||
10 | 1 | |||||||
WHERE AS RANK A^2 = 1 , SINCE WE HAVE NO II ORDER NON ZERO DETERMINANT | ||||||||
NOW CONSIDER … | ||||||||
B= | B^2= | |||||||
1 | 2 | 3 | 24 | 33 | 42 | |||
4 | 5 | 6 | 54 | 75 | 96 | |||
5 | 7 | 9 | 78 | 108 | 138 | |||
WE CAN SEE HERE THAT RANK OF B = 2 = RANK OF B^2 | ||||||||
SO WE HAVE AN EXAMPLE WHERE .. | ||||||||
RANK OF A = RANK OF B = 2 | ||||||||
BUT RANK OF A^2 = 1 IS NOT EQUAL TO RANK OF B^2=2 | ||||||||
6…. | ||||||||
IN A NON SQUARE MATRIX OF SAY M ROWS AND N COLUMNS | ||||||||
WE HAVE 2 CASES | ||||||||
CASE 1 ….. M < N | ||||||||
THAT IS THERE ARE MORE COLUMNS THAN ROWS … | ||||||||
THAT IS THERE ARE MORE THAN M COLUMN VECTORS | ||||||||
IN RM SPACE OF DIMENSION M .. | ||||||||
BUT WE CAN AT MOST HAVE HAVE M LINEARLY INDEPENDENT | ||||||||
COLUMN VECTORS IN RM OF DIMENSION M. | ||||||||
SO THE N COLUMN VECTORS ARE L.D. | ||||||||
THAT IS THE COLUMNS ARE L.D. | ||||||||
CASE 2 ……M > N | ||||||||
THAT IS THERE ARE MORE ROWS THAN COLUMNS .. … | ||||||||
USING THE PROPERTY THAT |A| = | A TRANSPOSE|, | ||||||||
BY TAKING TRANSPOSE OF THIS MATRIX AND APPLYING THE | ||||||||
SAME LOGIC AS ABOVE , WE CAN PROVE THAT THE ROWS | ||||||||
WILL BE L.D. | ||||||||
0 Comments:
Post a Comment
<< Home