COMPLEX NUMBERS
-------------------
-------------------
For details see post on
26-Feb-2015 at 6:00 am.
PLEASE SHOW ALL WORK
What classes of complex numbers z satisfy each of the following relations?
a. z* = z
b. z* = -z
c. z*z = z^2
d. |z| = 1
e. arg(z) = pi
f. Re(z) = Im(z)
a. z* = z
b. z* = -z
c. z*z = z^2
d. |z| = 1
e. arg(z) = pi
f. Re(z) = Im(z)
a. z* = z | HOPE YOU MEAN Z BAR OR CONJUGATE OF Z BY THE SYMBOL Z* …ASSUMING SO … | |||||||||||||||
SO WE GET ….A-BI=A+BI….B=0….SO Z SHALL BE A PURELY REAL NUMBER …. | ||||||||||||||||
b. z* = -z | HOPE YOU MEAN Z BAR OR CONJUGATE OF Z BY THE SYMBOL Z* …ASSUMING SO … | |||||||||||||||
A-BI = -A-BI……..A=0…..SO Z SHALL BE A PURELY IMAGINARY NUMBER . | ||||||||||||||||
c. z*z = z^2 | HOPE YOU MEAN Z BAR OR CONJUGATE OF Z BY THE SYMBOL Z* …ASSUMING SO … | |||||||||||||||
[A+BI][A-BI]=[A+BI]^2……A^2+B^2=A^2+B^2+2A*B*I….SO A*B = 0 | ||||||||||||||||
THAT IS EITHER A=0 OR B=0 OR BOTH …THAT IS Z SHALL BE EITHER | ||||||||||||||||
PURELY IMAGINARY OR PURELY REAL OR ZERO . | ||||||||||||||||
d. |z| = 1 | ||||||||||||||||
X^2+Y^2=1……THAT IS Z SHALL BE OF THE TYPE Z = COS(T) + I*SIN(T).. | ||||||||||||||||
OR Z SHALL REPRESENT THE UNIT CIRCLE WITH CENTER AT THE ORIGIN | ||||||||||||||||
AND RADIUS = 1 UNIT . | ||||||||||||||||
e. arg(z) = pi | ||||||||||||||||
ATAN[B/A]=PI …TAN[PI]=B/A=0….B=0…..THAT IS Z SHALL BE PURELY REAL NUMBER . | ||||||||||||||||
f. Re(z) = Im(z) | ||||||||||||||||
A = B …….THAT IS Z SHALL BE OF THE TYPE …Z=R[1+I] …OR IT SHALL REPRESENT A LINE THROUGH ORIGIN | ||||||||||||||||
WITH UNIT SLOPE IN THE ARGAND DIAGRAM |
0 Comments:
Post a Comment
<< Home