SHARING.... -experiences of teaching maths as a hobby for over 50 years to school and college students. -challenges in project management and the common sense approach to it from old classics.

Tuesday, March 17, 2015

MAXIMA-MINIMA......A DIFFERENT PROBLEM
------------------------------------------------------


WANT FREE COACHING IN MATHS IN BANGALORE ?
CALL 9480193388 OR EMAIL
freemaths10212@gmail.com
For details see post on 26-Feb-2015 at 6:00 am.

---------------------------------------------

----------------------------------------------------
 
SURFACE AREA = S = 2[XY+YZ+ZX] = 7000
XY+YZ+ZX=3500……………………………….1
EDGE LENGTH = P= 4[X+Y+Z]=440
X+Y+Z=110……………………………..2
VOLUME=V=XYZ.................................3


AT THE OUT SET IT IS CLEAR THAT USING CRITERIA FOR LOCAL MAXIMA/MINMA
THE SOLUTION IF ANY  HAS TO BE AT ...X=Y=Z...BUT THIS IS CLEARLY NOT POSSIBLE SINCE ..THIS LEADS TO .....3X^2=3500....OR...X=34.16 FROM EQN. 1 .AND.......
.....3X=110...OR...X=36.7 FROM EQN.2 WHICH ARE CONTRADICTORY ..
SO THE MAXIMA/MINIMA WILL ONLY BE AT BOUNDARIES WHICH HAVE TO BE EVALUATED...

FROM EQN. 2 ….X = 110-Y-Z………….4



PUTTING EQN. 1





Z= [3500-XY]/[X+Y]………………..5



PUTTING EQN. 5 IN EQN.4




X=110-Y- [3500-XY]/[X+Y]




Y^2+Y[X-110]+[X^2-110X+3500] =0..



 Y= 0.5*[(110-X)+(-3X^2+220X-1900)^0.5] …OR….

Y= 0.5*[(110-X)-(-3X^2+220X-1900)^0.5]


WE FIND DISCRIMINANT D = -3X^2+220X-1900 -
 D = -[X-10][3X-190 ] ..=0 ..............AT …X = 10 AND ….X= 190/3=63.3333



SO WE GET THE DIMENSIONS &VOLUME AT THE BOUNDARIES AS FOLLOWS
NOTE THAT THE FUNCTIONS BEING SYMMETRIC IN X,Y,Z , WE CAN TAKE
POINTS AS [10,50,50];[50,50,10];[50,10,50]…AND…


[190/3,70/3,70/3] ; [70/3,190/3,70/3] ; [70/3,70/3,190/3]









X Y Z1 Z2 V=


10 50 50 50 25000 MINIMUM 
50 50 10 10 25000 MINIMUM 
50 10 50 50 25000 MINIMUM 
63.33333 23.33333 23.33333 23.33333 34481.481 MAXIMUM 
23.33333 63.33333 23.33333 23.33333 34481.481 MAXIMUM 
23.33333 23.33333 63.33333 63.33333 34481.481 MAXIMUM 


0 Comments:

Post a Comment

<< Home