LINEAR ALGEBRA - VECTOR SPACES
-----------------------------------------------
Let W be the subspace of R^4 spanned by the set S = {[1, 1, 2, -1], [1, 2, 1, 1], [1, 4, -1, 5], [1, 0, 4, -1], [2, 5, 0, 2]} Find an ordered subset B of S that forms a basis for W. For the ordered basis B you found, give the coordinate vector [w]B for each vector w in S.
-----------------------------------------------
For details see post on
26-Feb-2015 at 6:00 am.
----------------------------------------------Let W be the subspace of R^4 spanned by the set S = {[1, 1, 2, -1], [1, 2, 1, 1], [1, 4, -1, 5], [1, 0, 4, -1], [2, 5, 0, 2]} Find an ordered subset B of S that forms a basis for W. For the ordered basis B you found, give the coordinate vector [w]B for each vector w in S.
W =[V1,V2,V3,V4] | ||||||
V1= | V2= | V3= | V4= | V5= | ||
1 | 1 | 1 | 1 | 2 | ||
1 | 2 | 4 | 0 | 5 | ||
2 | 1 | -1 | 4 | 0 | ||
-1 | 1 | 5 | -1 | 2 | ||
W IS IN R4 …SO… | ||||||
WE NEED 4 AND ONLY 4 L.I. VECTORS TO FORM A BASIS FOR IT | ||||||
IF IT SPANS R4 ..IF IT DOES NOT SPAN R4 , BUT SPANS ONLY R3 OR LOWER | ||||||
THEN WE NEED ONLY THOSE NUMBER OF L.I. VECTORS TO FORM A BASIS .. | ||||||
THE STD METHOD IS TO REDUCE THE ABOVE IN RREF & CHECK | ||||||
NR2=R2-R1….NR3=R3-2R1….NR4=R4+R1 | ||||||
1 | 1 | 1 | 1 | 2 | ||
0 | 1 | 3 | -1 | 3 | ||
0 | -1 | -3 | 2 | -4 | ||
0 | 2 | 6 | 0 | 4 | ||
NR1=R1-R2….NR3=R3+R2….NR4=R4-2R2 | ||||||
1 | 0 | -2 | 2 | -1 | ||
0 | 1 | 3 | -1 | 3 | ||
0 | 0 | 0 | 1 | -1 | ||
0 | 0 | 0 | 2 | -2 | ||
NR1=R1-2R3….NR2=R2+R3….NR3=R3….NR4=R4-2R3 | ||||||
1 | 0 | -2 | 0 | 1 | ||
0 | 1 | 3 | 0 | 2 | ||
0 | 0 | 0 | 1 | -1 | ||
0 | 0 | 0 | 0 | 0 | ||
WE FIND THAT LAST ROW IS ALL ZEROS . | ||||||
SO W SPANS ONLY R3 | ||||||
SO WE NEED 3 AND ONLY 3 L.I. VECTORS TO FORM ITS BASIS | ||||||
WE FIND THAT V1 , V2 , V4 ARE L.I. .. | ||||||
SO THE BASIS IS …..B = [V1 , V2 , V4 ] …THAT IS … | ||||||
V1= | V2= | V4= | ||||
1 | 1 | 1 | ||||
1 | 2 | 0 | ||||
2 | 1 | 4 | ||||
-1 | 1 | -1 | ||||
ANSWER………… |
0 Comments:
Post a Comment
<< Home